

Application of a Doehlert experimental design to the optimization of an Au–Co plating electrolyte

L. CHALUMEAU¹, M. WERY^{1*}, H.F. AYEDI², M.M. CHABOUNI³ and C. LECLERE⁴

¹Laboratoire de Chimie des Matériaux et des Interfaces, Université de Franche, Comté-Route de Gray, 25030 Besançon, France

²URCI, Ecole Nationale d'Ingénieurs de Sfax-BP, W-3038 Sfax, Tunisie
 ³LCI, Ecole Nationale d'Ingénieurs de Sfax-BP, W-3038 Sfax, Tunisie
 ⁴Métalor SA, DAT-R&D, 41 Rue de Paris, 93130 Noisy le Sec, France (*author for correspondence, e-mail: martine.wery@univ.fcomte.fr)

Received 6 November 2003; accepted in revised form 7 July 2004

Key words: canonical analysis, Doehlert experimental design, GDOES, gold electrodeposit, XPS

Abstract

Electrodeposited cobalt hardened gold is widely used for electronic applications. The aim of this study was to investigate and optimize the performances of the plating electrolyte (cathodic efficiency and deposition rate) and the composition of the Au–Co coating. A four variable Doehlert experimental design was applied to this optimization and validation was carried out by means of statistical analysis. In a second step, the 'optimal' Au–Co electrodeposit was examined by spectroscopy techniques (GDOES, XPS).

1. Introduction

Hard gold electrodeposits have been widely used as a contact material in various electronic terminal devices due to their unique feature combining physical and electrical properties [1-3]. So-called 'hard gold' is, in fact, an alloy containing a small percentage of a hardening metal – usually nickel or cobalt (from 0.3 to 1.6 atom percent (a/o) i.e. 0.1–0.5 weight percent (w/o)) [1-21] – although use of other metals [22-24] and additive-free gold [25-28] have also been reported. Over the past few years, there has been increasing interest in cobalt as an alloving partner to replace allergenic nickel. A small cobalt addition in buffered acid solutions of KAu(CN)₂ raises the hardness of the plated layer to 140–220 Hv and yields surfaces having low and stable contact resistance $(3-7 \text{ m}\Omega)$ as well as good wear resistance. So, the commercial and economic importance of cobalt-hardened gold has led to extensive investigations into (i) the properties and microstructure of the deposits [16-21] (ii) the chemical state of cobalt in cobalt-hardened gold coatings [16-19, 29-32] (iii) the incorporation of foreign elements such as carbon, nitrogen and potassium in the deposits [29–35].

The aim of the present study was to investigate the combined effect of the Au–Co electrolyte composition and the current density on both the performances of the plating solution (deposition rate, cathodic efficiency) and the cobalt content in the electrodeposit. Previous

studies on performances of Au-Co electrolytes and properties of electrodeposits have investigated the influence of each parameter one at a time while keeping the others constant. We have viewed the problem from a different angle. Because parameters in a plating operation are numerous and co-exist in complex relationships, the application of an experimental design such a Doehlert design [36] seems the most suitable experimental approach to optimize the performances of the electrolyte and the composition of the Au-Co deposit via the composition of the plating solution. The first step was to determine the optimum composition of the plating solution, which led to maximize the cathodic efficiency and the deposition rate and to limit the cobalt content of the coating. Next, the characteristics of the Au-Co electrodeposit corresponding to the optimum composition were investigated using spectroscopy techniques (GDOES, XPS).

2. Experimental techniques

2.1. Samples

All hard gold films were plated in a proprietary bath (commercially known as Engold 2010 CHS purchased from Metalor SA). The bath was composed of a potassium gold cyanide salt, a citric acid as the buffer, a cobalt salt as the hardening-brightening agent and a pyridinic brightener. Plating was carried out at 55 °C. All gold coatings were deposited onto nickel-plated brass disk (0.5 mm thick–20 mm diameter) using a rotating disk cathode (1000 rpm) to provide a well-defined geometry and agitation. Other parameters were adjusted in accordance with each process technical data sheet i.e. gold, cobalt and brightener concentrations and pH.

2.2. Measurement procedures

- *Cobalt content*: The cobalt content was measured by atomic absorption spectroscopy.
- *Cathodic efficiency*: The cathodic efficiency for gold deposition was determined by weighing the nickel-plated disk before and after plating.
- Glow discharge optical emission spectroscopy (GDOES).

The distribution of impurity species in the gold layers was determined by depth profiling using a LECO GDOES 750 A instrument. 700 V and 20 mA were chosen as measurement parameters for the excitation and sputtering process. The analysis area was 4 mm in diameter. The sputtering layer was 0.1 μ m thick. The following atomic emission lines were: C: 156.143 nm, Co: 345.351 nm, N: 174.724 nm, K: 766.490 nm, Au: 242.795 nm, Ni: 341.477 nm and Cu: 327.396 nm.

• X-ray photoelectron spectroscopy (XPS).

An S-Probe (SSI) equipped with a hemispherical analyser was used. AlK α radiation of 1486.7 eV energy was applied for excitation. The vacuum conditions for the analyser chamber were nearly 10^{-10} mbar during analysis. The analysed area was about $300 \times 1200 \ \mu\text{m}^2$.

2.3. Doehlert experimental design

The Doehlert experimental design [36] was used to study the effect of the plating conditions on the performances of the plating bath and the coating properties. Among the Doehlert design properties, one involved uniform distribution: a set of points was uniformly distributed in space, thus allowing exploration of the whole experimental domain. The variables U_i selected were:

 U_1 : Gold concentration in the plating bath (g l⁻¹).

 U_2 : pH of the plating bath.

 U_3 : Current density (A dm⁻²).

 U_4 : Cobalt concentration in the plating bath (g l⁻¹).

To simplify the calculations, coded variables X_j were used instead of natural variables U_j [36].

For the Doehlert design construction, its centre and variation step as shown in Table 1 defined the study domain.

Three responses were studied: Y_1 : cathodic efficiency (% wt), Y_2 : deposition rate (mg min⁻¹) and Y_3 : cobalt content in the gold–cobalt coating (ppm).

A full quadratic model with 15 coefficients, including interaction terms, was assumed to describe relationship between each response Y_i and experimental factors X_j :

Table 1. Experimental domain

Variables	Levels	Centre $U_j(0)$	Step ΔU_j
$U_1 (g l^{-1})$	5	8.5	6.5
U_2 (u pH)	7	4.5	0.5
$U_3 (A dm^{-2})$	7	15	10
$U_4 (g l^{-1})$	3	1.0	0.5

$$\hat{Y} = b_0 + \sum_{j=1}^{j=4} b_j X_j + \sum_{j=1}^{j=3} \sum_{k=2}^{k=4} b_{jk} X_j X_k + \sum_{j=1}^{j=4} b_{jj} X_j^2$$

where b_0 is the constant of the model; b_j , the first degree coefficients; b_{jk} , the cross-product coefficients and b_{jj} , the quadratic coefficients.

The Doehlert matrix required attribution of different levels to the selected variables. If the number of factors is k, then in addition to the centre point, a total of $k^2 + k$ design points lie on hypersphere of radius one. So, the total assay number $(N = k^2 + k + 1)$ is generally low: with four factors this number is 21.

In this work, we used Nemrod W software [37] for data calculation and treatment.

3. Results and discussion

3.1. Response models and validation

Table 2 shows the Doehlert experimental design in coded variables and the obtained responses Y_i . Fitted to 21 responses values (Table 2), the second order models are represented by the following equations:

Table 2. Experimental design (coded) and responses values

No. of		Factors			Responses		
exp.	X_1	X_2	<i>X</i> ₃	X_4	Y_1	Y_2	Y_3
1	1.0000	0.0000	0.0000	0.0000	25.26	66.2	1434
2	-1.0000	0.0000	0.0000	0.0000	7.71	20.2	4285
3	0.5000	0.8660	0.0000	0.0000	32.66	85.6	986
4	-0.5000	-0.8660	0.0000	0.0000	10.91	28.6	2813
5	0.5000	-0.8660	0.0000	0.0000	18.77	49.2	2156
6	-0.5000	0.8660	0.0000	0.0000	16.02	42.0	1981
7	0.5000	0.2887	0.8165	0.0000	20.63	83.6	1281
8	-0.5000	-0.2887	-0.8165	0.0000	33.59	40.2	2020
9	0.5000	-0.2887	-0.8165	0.0000	49.63	59.4	1728
10	0.0000	0.5774	-0.8165	0.0000	50.63	60.6	1304
11	-0.5000	0.2887	0.8165	0.0000	9.62	39.0	2542
12	0.0000	-0.5774	0.8165	0.0000	13.47	54.6	2304
13	0.5000	0.2887	0.2041	0.7906	40.85	121.8	2179
14	-0.5000	-0.2887	-0.2041	-0.7906	18.87	42.8	2576
15	0.5000	-0.2887	-0.2041	-0.7906	43.13	97.8	1551
16	0.0000	0.5774	-0.2041	-0.7906	38.98	88.4	1641
17	0.0000	0.0000	0.6124	-0.7906	23.87	88.2	1158
18	-0.5000	0.2887	0.2041	0.7906	24.15	72.0	4118
19	0.0000	-0.5774	0.2041	0.7906	19.65	58.6	3016
20	0.0000	0.0000	-0.6124	0.7906	39.64	61.6	2481
21	0.0000	0.0000	0.0000	0.0000	22.58	59.2	1520

F Significance Response Sum of squares Degrees of Mean square Source freedom (df) \hat{Y}_1 3.25649×10^{3} 14 2.32606×10^{2} 9.4038 0.685** Regression Residual 1.48413×10^{2} 2.47355×10^{1} 6 Total 3.40490×10^{3} 20 \hat{Y}_2 1.11150×10^4 7.93935×10^{2} 4.1972 4.47* Regression 14 1.89160×10^{2} 1.13496×10^{3} Residual 6 Total 1.22500×10^4 20 1.06747×10^{6} \hat{Y}_3 Regression 1.49445×10^{-1} 14 9.0706 0.745** Residual 7.06101×10^5 1.17683×10^{5} 6 Total 1.56506×10^{7} 20

Table 3. ANOVA table for the responses \hat{Y}_1, \hat{Y}_2 and \hat{Y}_3

The significance in the table is the probability (between 0 and 1) of obtaining a ratio of mean squares greater than *F*. The significance level is represented in the conventional manner: ** < 0.01 (1%) and * < 0.05 (5%) [38].

$$\begin{split} \hat{Y}_1 &= 22.58 + 12.76X_1 + 6.93X_2 - 17.32X_3 - 0.09X_4 \\ &+ 5.07X_1X_2 - 4.87X_1X_3 - 3.74X_2X_3 - 5.37X_1X_4 \\ &+ 6.03X_2X_4 + 7.29X_3X_4 - 6.10X_1^2 - 1.96X_2^2 \\ &+ 12.54X_3^2 + 12.80X_4^2 \end{split}$$

$$\begin{split} \hat{Y}_2 &= 59.2 + 32.5X_1 + 17.2X_2 + 7.0X_3 - 0.5X_4 \\ &+ 13.3X_1X_2 + 10.9X_1X_3 + 0.9X_2X_3 - 10.9X_1X_4 \\ &+ 18.5X_2X_4 + 14.2X_3X_4 - 16.0X_1^2 - 5.1X_2^2 \\ &+ 0.8X_3^2 + 35.6X_4^2 \end{split}$$

$$\begin{split} \hat{Y}_3 &= 1520 - 1187X_1 - 491X_2 + 158X_3 + 770X_4 \\ &- 195X_1X_2 - 524X_1X_3 - 287X_2X_3 - 371X_1X_4 \\ &+ 53X_2X_4 + 756X_3X_4 + 1340X_1^2 + 172X_2^2 \\ &+ 137X_2^2 + 982X_4^2 \end{split}$$

Table 3 shows the analysis of variance (ANOVA) for the three responses. As it can be seen, the regression sum of squares is statistically significant (their *p* value is less than 0.05) [38–41]. The residual sum of squares is calculated with 6 degrees of freedom (df) for testing the adequacy of the fitted model. For the responses \hat{Y}_1 , \hat{Y}_2 and \hat{Y}_3 , the multiple correlation coefficients are respectively 0.956, 0.907 and 0.955. These values indicate how well the derivate models fitted the experimental data. We can then conclude that each second order model is adequate and can be used as prediction equation.

3.2. Canonical analysis

The purpose of the following paragraph is to find out the best experimental conditions, which lead to maximize the cathodic efficiency (Y_1) and the deposition rate (Y_2) and to limit the cobalt content of the coating (Y_3) in the range 2000–3000 ppm.

The second order model with square terms describes a variety of shaped response surfaces. The stationary point of the response surface can be a maximum, a minimum or a saddle point (minimax). It is rather difficult to comprehend how the surface is shaped by mere inspection of the algebraic expression of the model. But the nature of the stationary point is conveniently determined by a canonical analysis [38–41]. In our case the three stationary points S_i are outside the study domain:

$$S_{1} \begin{pmatrix} 1.38\\ 1.58\\ 1.33\\ -0.46 \end{pmatrix} S_{2} \begin{pmatrix} -0.80\\ 1.44\\ -6.33\\ 0.77 \end{pmatrix} S_{3} \begin{pmatrix} 0.06\\ -0.40\\ -2.15\\ 0.46 \end{pmatrix}$$

Under these conditions, the canonical analysis consists only in a unique rotation of the co-ordinate system (without translation), which removes the cross-product terms $b_{jk}X_jX_k$ from the mode while keeping the initial origin at the centre point. We shall use Z_j to denote the axes of such rotated system. This will give a canonical model of the form:

$$Y = Y_{\rm s} + \sum_{j=1}^{j=4} b_j Z_j + + \sum_{j=1}^{j=4} \lambda_j Z_j^2$$

The λ_j will describe the curvature of the response while the linear coefficient b_j will describe the slope of the ridge in the corresponding direction. The constant Y_s is the calculated response value at the stationary point. The interpretation is easier by analysing each response along every Z_j -axis separately. The canonical analysis is only detailed for the first response i.e. cathodic efficiency. For the two following responses (Y_2 and Y_3), we only give the final results.

3.2.1. Study of the cathodic efficiency (response Y_1) The variable transformations

$$X_1 = -0.15 Z_1 - 0.04 Z_2 + 0.45 Z_3 + 0.88 Z_4$$

$$X_2 = 0.03 Z_1 - 0.28 Z_2 + 0.85 Z_3 - 0.44 Z_4$$

$$X_3 = 0.68 Z_1 + 0.70 Z_2 + 0.23 Z_3 + 0.03 Z_4$$

$$X_4 = 0.72 Z_1 - 0.65 Z_2 - 0.15 Z_3 + 0.17 Z_4$$

and

 $Z_1 = -0.15 X_1 + 0.03 X_2 + 0.68 X_3 + 0.72 X_4$ $Z_2 = -0.04 X_1 - 0.28 X_2 + 0.70 X_3 - 0.65 X_4$ $Z_3 = 0.45 X_1 + 0.85 X_2 + 0.23 X_3 - 0.15 X_4$ $Z_4 = 0.88 X_1 - 0.44 X_2 + 0.03 X_3 + 0.17 X_4$

lead to the following canonical form of the model:

$$\hat{Y}_1 = 22.6 - 13.5 Z_1 - 14.6 Z_2 + 7.7 Z_3 + 7.5 Z_4 + 16.9Z_1^2 + 10.0Z_2^2 - 1.7 Z_3^2 - 8.0Z_4^2$$

These data allow us to determine the features of the response surface in each direction of the study domain.

3.2.1.1. Analysis along the OZ_1 direction. The equation of \hat{Y}_1 response is reduced to: $\hat{Y}_1 = 22.6 - 13.5 Z_1 + 16.9Z_1^2$.

The corresponding curve is represented in Figure 1(1). This curve shows that maximization of Y_1 requires low level of Z_1 . According to the equations of the variable transformations, this can be achieved by choosing low levels (-1) for X_3 and X_4 .

3.2.1.2. Analysis along the OZ_2 direction. The equation of \hat{Y}_1 response is reduced to: $\hat{Y}_1 = 22.6 - 14.6 Z_2 + 10.0 Z_2^2$ and represented in Figure 1(2). To increase Y_1 it is necessary to progress in the negative direction of Z_2 -axis. From the equations of the variable transformations, it can be seen that this corresponds to a decrease of X_3 and an increase of X_4 . Y_1 is maximum when $X_3 = -1$ and $X_4 = +1$. At this point, we must draw attention to the fact that the choice of the X_4 level is opposite to that required increasing Y_1 along OZ_1 -axis.

3.2.1.3. Analysis along the OZ_3 direction. The equation of \hat{Y}_1 response is reduced to: $\hat{Y}_1 = 22.6 + 7.7 Z_3 - 1.7 Z_3^2$.

The corresponding curve is represented in Figure 1(3). Any displacement on Z_3 -axis in the positive direction

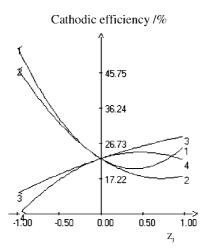


Fig. 1. Curvature of \hat{Y}_1 response vs. Z_j .

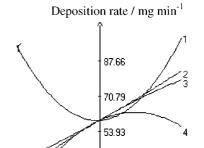


Fig. 2. Curvature of \hat{Y}_2 response vs. Z_j .

induces an increase of Y_1 . Because the OZ_3 -axis is almost parallel to OX_2 -axis, Y_1 should be optimized by choosing high level (+1) for X_2 .

3.2.1.4. Analysis along the OZ_4 direction. The equation of \hat{Y}_1 response is reduced to: $\hat{Y}_1 = 22.6 + 7.5 Z_4 - 8.0 Z_4^2$ and represented in Figure 1(4). The maximum of Y_1 can be obtained for Z_4 levels ranging from 0 to 0.4 and therefore for X_1 levels varying between 0 and 0.4 (OZ_4 axis is almost parallel to OX_1 -axis).

3.2.2. Study of the deposition rate (response Y_2) By the transformation

$$X_{1} = -0.06 Z_{1} + 0.39 Z_{2} + 0.34 Z_{3} + 0.85 Z_{4}$$

$$X_{2} = 0.20 Z_{1} + 0.20 Z_{2} + 0.86 Z_{3} - 0.43 Z_{4}$$

$$X_{3} = 0.17 Z_{1} + 0.88 Z_{2} - 0.36 Z_{3} - 0.25 Z_{4}$$

$$X_{4} = 0.96 Z_{1} - 0.18 Z_{2} - 0.09 Z_{3} + 0.18 Z_{4}$$

and

$$Z_1 = -0.06 X_1 + 0.20 X_2 + 0.17 X_3 + 0.96 X_4$$

$$Z_2 = 0.39 X_1 + 0.20 X_2 + 0.88 X_3 - 0.18 X_4$$

$$Z_3 = 0.34 X_1 + 0.86 X_2 - 0.36 X_3 - 0.09 X_4$$

$$Z_4 = 0.85 X_1 - 0.43 X_2 - 0.25 X_3 + 0.18 X_4$$

the second order model of \hat{Y}_2 becomes:

$$Y_1 = 59.2 + 2.3 Z_1 + 22.4 Z_2 + 23.4 Z_3 + 18.5 Z_4$$

+ 39.0 $Z_1^2 + 2.0 Z_2^2 - 3.7 Z_3^2 - 22.1 Z_4^2$

The corresponding curves along the four axes are represented in Figure 2. Following the same analysis as above, the deposition rate should be optimized by:

- increasing both X_2 (+1) and X_3 (+1),
- either increasing or decreasing X_4 : (+1) or (-1),
- choosing a level for X_1 between 0 and 0.4.

3.2.3. Study of the cobalt content in the Au–Co electrodeposit (response Y_3) Using the variable transformations:

 $X_1 = 0.84 Z_1 + 0.53 Z_2 + 0.01 Z_3 + 0.15 Z_4$ $X_2 = -0.04 Z_1 - 0.08 Z_2 + 0.87 Z_3 + 0.48 Z_4$ $X_3 = -0.28 Z_1 + 0.22 Z_2 - 0.45 Z_3 + 0.82 Z_4$

$$X_3 = -0.28 Z_1 + 0.22 Z_2 - 0.45 Z_3 + 0.82 Z_4$$
$$X_4 = -0.47 Z_1 + 0.82 Z_2 + 0.20 Z_3 - 0.27 Z_4$$

and

 $Z_1 = 0.84 X_1 - 0.04 X_2 - 0.28 X_3 - 0.47 X_4$ $Z_2 = 0.53 X_1 - 0.08 X_2 + 0.22 X_3 + 0.82 X_4$ $Z_3 = 0.01 X_1 + 0.87 X_2 - 0.45 X_3 + 0.20 X_4$ $Z_4 = 0.15 X_1 + 0.48 X_2 + 0.82 X_3 - 0.27 X_4$

we obtain the canonical form of \hat{Y}_3 :

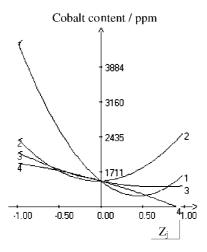
$$\hat{Y}_3 = 1520 - 1379.5 Z_1 + 71 Z_2 - 351 Z_3 - 487 Z_4$$

+ 1537 Z_1^2 + 960 $Z_2^2 + 251 Z_3^2 - 118 Z_4^2$

The curvatures of the \hat{Y}_3 response along the OZ_j are given in Figure 3. As above, we can deduce that a cobalt content in the Au–Co electrodeposit in the range 2000–3000 ppm can be obtained by fixing:

 $-X_1$ in the range (-0.2)–(-0.5),

 $-X_3$ at 0.9,


 $-X_4$ at -1 or +1.

It is important to point out that varying X_2 does not affect \hat{Y}_3

3.3. Optimization

Table 4 summarizes the experimental conditions, which lead to the optimization of the three separately taken responses.

The overall result of this response analysis suggests that plotting the isoresponse curves as a function of X_3 and X_4 allows us to find the optimum. The other variables X_1 and

Fig. 3. Curvature of \hat{Y}_3 response vs. Z_j .

Table 4. Overall results of the canonical analysis

	X_1	X_2	X_3	X_4
$ \begin{array}{c} \hat{Y}_1 \\ \hat{Y}_2 \\ \hat{Y}_3 \end{array} $	0-0.4 0-0.4 (-0.2)-(-0.5)	+ 1 + 1 No effect	-1 + 1 0.9	? -1 or +1 -1 or +1

 X_2 should be maintained at the constant levels 0 (to minimize the gold content of the bath) and +1 respectively. Figures 4–6 show the isoresponse contour projection of the three responses. The examination of the isoresponse curves enables to conclude that the best compromise is obtained in a domain around the combination levels of the variables indicated in Table 5. This set of levels gives calculated responses of:

$$\hat{Y}_1 = 43.3\%$$
 $\hat{Y}_2 = 116.3 \,\mathrm{mg\,min^{-1}}$ $\hat{Y}_3 = 2737 \,\mathrm{ppm}$

To validate the calculated optimal conditions, an additional experiment was run with the levels of the optimum. The experimental responses ($\hat{Y}_1 = 43.0\%$, $\hat{Y}_2 = 117.2 \text{ mg}^{-1}$, $\hat{Y}_3 = 2757 \text{ ppm}$) are in close agreement with the predicted responses.

3.4. Characteristics of the Au-Co electrodeposit

The characteristics of the Au–Co electrodeposit corresponding to the 'optimum composition' have been investigated using GDOES and XPS techniques.

Figure 7 shows the GDOES depth profile from the Au–Co electrodeposit with the distribution of C, N, K and Co. Three species (Co, K and N) increase in the outer region of the film, of proportion of the total film thickness (or time abrasion *T*), T_{outer}/T_{Au} deposit of ≈ 0.15 , except for C, revealing a complex variation

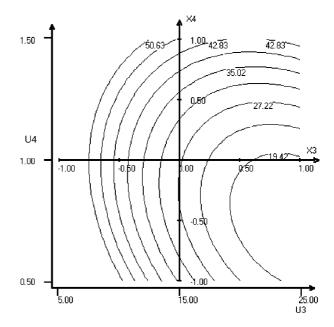
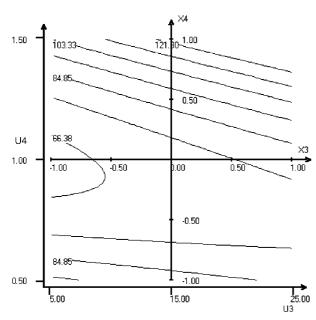
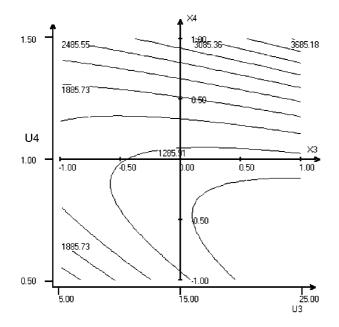




Fig. 4. Isocontours of the cathodic efficiency with $X_1=0$ and $X_2=1$.

Fig. 5. Isocontours of the deposition rate with $X_1=0$ and $X_2=1$.

Fig. 6. Isocontours of the Co content in the Au–Co deposit with $X_1=0$ and $X_2=1$.

with depth. Beyond this transitional zone, they are uniformly distributed.

XPS analysis shows a surface composed principally of carbon aliphatic form probably due to the adsorption of

Table 5. Optimal conditions

	X_{j}	U_{j}
Gold concentration in the plating bath $(g l^{-1})$	0	8.5
pH of the plating bath	1	5
Current density (A dm ⁻²)	0	15
Cobalt concentration in the plating bath (g l^{-1})	0.9	1.45

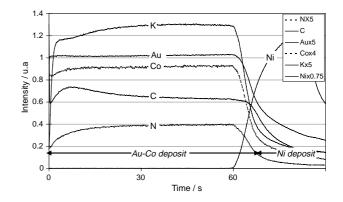


Fig. 7. GDOES depth profiles of Au-Co electrodeposit.

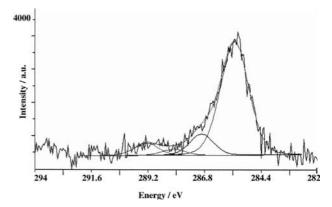


Fig. 8. XP spectra of Au-Co electrodeposit. - C 1s.

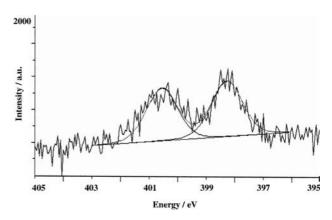


Fig. 9. XP spectra of Au-Co electrodeposit. - N 1s.

organic compounds present in the electrolyte (organic acids and salts). Figure 8 reveals four forms of carbon: C-C or C-H at 285 eV [42], C-O or C-N at 286.4 eV [43-45], C=O at 287.6 eV [46] and O-C=O at 288.6 eV [47]. Two forms of nitrogen are also revealed: C=N at 398 eV [48] and C-N or N-H at 400.5 eV [49] (Figure 9). For cobalt element, two types are detected at 780.7 and 786.9 eV at the extreme surface (Figure 10). The former may correspond to $K_3Co(CN)_6$ [50], while the later cannot be identified because no table reports it. This is neither cobalt metal (778.6 eV) nor

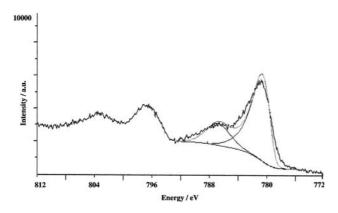
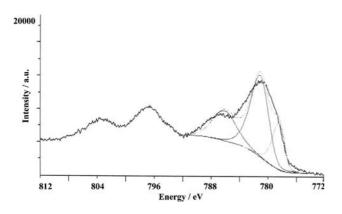



Fig. 10. XP spectra of Au–Co electrodeposit. – Co 2p (before abrasion).

Fig. 11. XP spectra of Au–Co electrodeposit. – Co 2p (after abrasion ≈ 200 Å).

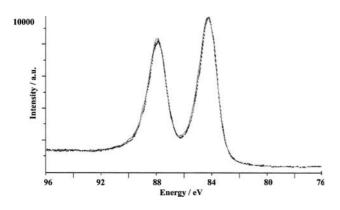


Fig. 12. XP spectra of Au-Co electrodeposit. - Au 4f.

Table 6.	Surface	analysis	of 2010	electrodeposit	by	XPS
----------	---------	----------	---------	----------------	----	-----

	Engold 2010 CHS extreme surfa	ce
Co (%at)	4.4	
C (%at)	36	
N (%at)	6.8	
O (%at)	9.4	
K (%at)	0.5	
$\frac{K}{[N]}$	0.19	

1183

Table 7. Proportion of each form of element in Au—Co electrodeposit by XPS

	Energy /eV	Liaison	Proportion without abrasion /%	Proportion after abrasion (200) /%
С	285.0	C–C	77	
	286.4	С—О	12	
	287.6	C=O	4	
	288.6	O-C=O	7	
Ν	398.0	C≡N	67	
	400.5	N orga.	33	
Co	778.2	Co(0)		20.3
	781.9	K ₃ Co(CN) ₆	75.6	53.6
	787.4		24.4	26.1
Au	83.8	Au(0)	50	
	88.0	Au(0)	50	

cobalt oxides (Co₃O₄ (780.3 eV) and CoO (780.5 eV)). Nevertheless, after abrasion (200 Å), a third form of cobalt appears at 778.6 eV corresponding to cobalt metal (Figure 11). Gold peaks do not show any chemical shift; this indicates that the gold in the coating is in Au(0)state (Figure 12). The XPS results are summarized in Tables 6 and 7. The aliphatic carbon form may come from buffer and/or organic brightener, which compose the plating electrolyte while the C=O form can be a fragment of a carboxylic acid, such as citric acid. The majority of nitrogen is in the form of $C \equiv N$ and also in CNO form as demonstrated by the presence of peaks at 286.4 eV of C_{1s} (Figure 8) and at 400.5 eV of N_{1s} (Figure 9). The organic nitrogen may be due to either nitrogen oxide or pyridinic nitrogen of organic brightener.

4. Conclusion

Because of the technical and economic importance of electrodeposited cobalt hardened gold, the industrial bath performance and characteristics of the electrodeposit were studied. The achievement of a Doehlert design followed by an optimization allows us to determine the best experimental conditions, which lead to maximization of both cathodic efficiency and deposition rate without a cobalt excess in the Au–Co electrodeposit. An investigation using spectrometric methods (GDOES and XPS) permits us to determine (i) the distribution of C, N, K and Co in the depth of the coating, (ii) the forms of the metallic (Au, Co) and non metallic (C, N) elements at the extreme surface.

Acknowledgements

Thanks are due to Mrs B. Georges (Sciences et Surface – Lyon France) for the GDOES and XPS measurements and the corresponding calculations and Mrs R.Souissi (E.N.I.S., Tunisie) for her assistance.

1184

References

- 1. F.H. Reid and W. Goldie (eds.), *Gold Plating Technology* (Electrochemical Publications, Ayr 1974).
- 2. M. Antler, Plating 60 (1973) 468.
- 3. Y. Okinaka and M. Hoshino, Gold Bull. 31 (1998) 3.
- V.A. Zabludovskii, A.V. Krapivnoi, V.I. Kaptanovskii and N.A. Kostin, *Elektrokhimiya* 25 (1989) 1258.
- 5. S.J. Hemsley and R.V. Green, Trans. Int. Metal Finish. 69 (1991) 149.
- R.M. Krishnan, S. Sriveeraraghavan and S.R. Natarajan, *Metal Finish.* 86 (1988) 56.
- 7. H.U. Galgoon, Feingerätetechnik 38 (1989) 353.
- H. L. Cohen, K.W. West and M. Antler, J. Electrochem. Soc. 124 (1977) 342.
- 9. K. Lin, R. Weil and K. Desai, J. Electrochem. Soc. 133 (1986) 690.
- 10. J.A. Lochet, Proc. AESF. Annu. Techn. Conf. 77th Vol. 2. (1990) p.983.
- 11. S.T. Rao and R. Weil, Trans. Int. Metal Finish. 57 (1979) 97.
- L. Sjögren, B. Asthner, L.G. Liljestrand and L.B. Revay, *Plat. Surf. Finish.* 73 (1986) 70.
- Y.G. Li, W. Chrzanowski and A. Lasia, J. Appl. Electrochem. 26 (1996) 385.
- 14. Y.G. Li and A. Lasia, J. Appl. Electrochem. 26 (1996) 853.
- 15. Y.G. Li and A. Lasia, J. Appl. Electrochem. 27 (1997) 643.
- A. Blair and D. Becker, AES Sur/fin'82, Annu. Techn. Conf. 70th (1983).
- R.L. Cohen, F.B. Koch, L.N. Schoenberg and K.W. West, J. Electrochem. Soc. 126 (1979) 1608.
- 18. J.H. Thomas III, S.P. Sharma, J. Electrochem. Soc. 126 (1979) 445.
- H. Leidheiser Jr., A. Vertes, M.L. Varsanyi and I. Czako-Nagy, J. Electrochem. Soc. 126 (1979) 391.
- 20. R. De Donker and J. Vanhumbeek, *Trans. Int. Metal. Finish.* 62 (1985) 59.
- P.Bindra, D. Light, P. Freudenthal and D. Smith, J. Electrochem. Soc. 136 (1989) 3616.
- N.N. Balashova, T.A. Smirnova, N.A. Smagunova and A.K. Yudina, *Zh. Prikl. Khim.* 50 (1977) 2698.
- H.R. Khan, M. Baugärtner and Ch. J. Raub, In Proceedings of the Symposium on Electrodeposition Technology: Theory and Practice (Electrochemical Society, Pennington, NY, 1987) p. 165.
- 24. T.E. Dinan and H.Y. Cheh, J. Electrochem. Soc. 139 (1992) 410.
- 25. H.A. Reinheimer, J. Electrochem. Soc. 121 (1974) 490.
- F.B. Koch, Y. Okinaka, C. Wolowodiuk and D.R. Blessington, *Plat. Surf. Finishing* 67 (1980) 50.
- F.B. Koch, Y. Okinaka, C. Wolowodiuk and D.R. Blessington, *Plat. Surf. Finishing* 67 (1980) 43.

- 28. Y. Okinaka and S. Nakahara, J. Electrochem. Soc. 123 (1976) 1284.
- Ch.J. Raub, A. Knödler and J. Lendvay, *Plat. Surf. Finish.* 63 (1976) 35
- 30. H.Angerer and N. Ibl, J. Applied Electrochem. 9 (1979) 219.
- A. Knödler, Metalloberfläche Angwandte Elecktrochemie 28 (1974) 465.
- Y. Okinaka, F.B. Koch, C. Wolowodiuk and D.R. Blessington, J. Electrochem. Soc. 125 (1978) 1745.
- 33. R.V. Green and T. Jones, Trans. Int. Metal Finish. 75 (1997) 162.
- 34. T.A. Davies and P. Watson, Plating 60 (1973) 1138
- 35. D.L. Malm and M.J. Vasile, J. Electrochem. Soc. 120 (1973) 1484.
- 36. D. H. Doehlert, Appl. Statist. 19 (1970) 231.
- D. Mathieu, J. Nony and R. Phan Tann-Luu, 'NEMPOD-W software' (LPRAI, Marseille, 2002).
- D. Mathieu and R. Phan Tann-Luu, In *Plans d'Expériences:* Application à l'entreprise (Technip, Paris, 1995).
- D. C. Montgomery, In *Design and Analysis of Experiments* (Wiley, New York, 1991).
- 40. J. Goupy, In *Plans d'Expériences Pour Surfaces de Réponse* (Dunod, Paris, 1999).
- A.I. Khuri and J.A. Cornell, In *Response Surfaces: Design and* Analyses (M. Dekker, New York, 1996).
- 42. H.J. Leary, Jr., D.S. Campbell, J.S. Slattery and R.J. Sargent, In ESCA Surface Analysis of Plasma Exposed Silicon Nitride and Photorsist Polymer Films (IBM General Technology Division editor, Essex).
- R. Erre, R. Benoit, F. Beguin and M. Inagaki, *International Symposium on Carbon* 2 (1990) 6PA 16, 806.
- P. Sundberg, R. Larsson and B. Folkesson, *Electron Spectrosc. Rel. Phenom.* 46 (1988) 19.
- 45. V.B. Wiertz and P. Bertrand, In Identification of the n-containing Functionalities Introduced at the Surface of Ammonia Plasma Treated Carbon Fibres by Combined TOF SIMS and XPS, Unité de Physico-Chimie et de Physique des Matériaux, Univ. Louvain 1348 Editor, Louvain.
- 46. N.M.D. Brown, J.A. Hewitt and B.J. Meenan, Surf. Interface. Analy. 18 (1992) 187.
- Q.T. Le, M. Chtaib, J.J. Pireaux and R. Caudano, Le Vide, les Couches Minces, Supplément 258 (1991) 86.
- C.D. Wagner, W.M. Riggs, L.E. Davis and J.F. Moulder, In Handbook of XPS (Perking-Elmer Corp., Physical Electronics Division Editor).
- 49. C. Jones and E. Samman, Carbon 28 (1990) 509.
- K. Merritt, R.S. Wortman, M. Millard and S.A. Brown, *Biomat.*, *Med. Dev.*, *Art. Org.* 11 (1983) 115.